Corrigé de l'examen partiel du 09 novembre 2012 (durée : 2h)

Questions de cours (5 points), voir le cours.

Exercice 1. (6 points). On considère le sous-ensemble de l'espace vectoriel $\mathcal{M}_2(\mathbb{R})$ défini par

$$A = \{M \in \mathcal{M}_2(\mathbb{R}) \mid {}^tM = M, \ tr(M) = 2, \ det(M) = 0\}.$$

1. Donner un exemple de norme sur $\mathcal{M}_2(\mathbb{R})$.

On peut par exemple choisir les normes $\|\cdot\|_{max}$ ou $\|\cdot\|_{\infty}$ définies sur $\mathcal{M}_2(\mathbb{R})$ comme suit : pour $M=(m_{i,j})_{1\leq i,j\leq 2}$,

$$||M||_{max} = \max_{1 \le i,j \le 2} |m_{i,j}|, \quad ||M||_{\infty} = \max_{1 \le i \le 2} \left(\sum_{j=1}^{2} |m_{i,j}|\right).$$

2. Montrer que A est fermé.

On remarque que A s'écrit comme $A = A_1 \cap A_2 \cap A_3$, avec

$$A_1 = \{ M \in \mathcal{M}_2(\mathbb{R}) \mid {}^t M = M \}, \quad A_2 = \{ M \in \mathcal{M}_2(\mathbb{R}) \mid \operatorname{tr}(M) = 2 \},$$

 $A_3 = \{ M \in \mathcal{M}_2(\mathbb{R}) \mid \det(M) = 0 \}.$

Introduisons les fonctions

$$f_1: \mathcal{M}_2(\mathbb{R}) \to \mathcal{M}_2(\mathbb{R}), \quad M \mapsto M - M^t M,$$

 $f_2: \mathcal{M}_2(\mathbb{R}) \to \mathbb{R}, \quad M \mapsto \operatorname{tr}(M) - 2,$
 $f_3: \mathcal{M}_2(\mathbb{R}) \to \mathbb{R}, \quad M \mapsto \operatorname{det}(M).$

Les composantes de f_1 et les fonctions f_2 et f_3 sont des fonctions polynomiales en les coefficients de M. D'après le cours, les fonctions f_1 , f_2 et f_3 sont par conséquent continues sur $\mathcal{M}_2(\mathbb{R})$. Puisque $\{O_{\mathcal{M}_2(\mathbb{R})}\}$ est un fermé de $\mathcal{M}_2(\mathbb{R})$ et $\{0\}$ est un fermé de \mathbb{R} , on en déduit, par théorème du cours, que $A_1 = f_1^{-1}(\{O_{\mathcal{M}_2(\mathbb{R})}\})$, $A_2 = f_2^{-1}(\{0\})$ et $A_3 = f_3^{-1}(\{0\})$ sont fermés. Une intersection (quelconque) de fermés étant un fermé, on conclut que A est fermé.

Autre méthode:

Soit $(M_n)_{n\in\mathbb{N}}$ une suite d'éléments de A qui converge vers M dans $\mathcal{M}_2(\mathbb{R})$. Montrons que $M\in A$. Écrivons $M_n=\begin{pmatrix} a_n & b_n \\ c_n & d_n \end{pmatrix}$ et $M=\begin{pmatrix} a & b \\ c & d \end{pmatrix}$. Le fait que $M_n\in A$ pour tout $n\in\mathbb{N}$ se traduit par

$$\forall n \in \mathbb{N}, \quad \begin{cases} b_n = c_n \\ a_n + d_n = 2 \\ a_n d_n - b_n c_n = 0. \end{cases}$$

Puisque $||M_n - M||_{\infty} \to 0$ quand $n \to \infty$, on a $a_n \to a$, $b_n \to b$, $c_n \to c$ et $d_n \to d$ quand $n \to +\infty$. En passant à la limite dans le système ci-dessus on obtient donc

$$\begin{cases} b = c \\ a + d = 2 \\ ad - bc = 0, \end{cases}$$

autrement dit $M \in A$.

3. Montrer que A est compact.

Comme A est inclus dans l'espace vectoriel $\mathcal{M}_2(\mathbb{R})$ qui est de dimension finie (égale à 4), il suffit, par théorème du cours, de démontrer que A est borné.

Soit $M=\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in A$, alors b=c, a+d=2 et ad-bc=0. Donc $ad=b^2\geq 0$, ainsi a et d sont de même signe. Puisque par ailleurs, a+d est positif, on doit avoir $a\geq 0$ et $d\geq 0$. Il s'ensuit que $a=2-d\leq 2$ et $d=2-a\leq 2$. On en déduit que $|a|\leq 2$ et $|d|\leq 2$. Puis, on a $b^2=ad\leq 4$ d'où $|b|=|c|\leq 2$.

Finalement, pour tout $M \in A$ on obtient $||M||_{\infty} \le 4$ ce qui implique que A est borné.

4. Soit $B = \{M \in \mathcal{M}_2(\mathbb{R}) \mid {}^tM = M, \ det(M) = 0\}$. B est-il fermé? B est-il compact? On a $B = A_1 \cap A_3$, où A_1 et A_3 sont définis au 2. et sont fermés, donc B est bien fermé. Montrons que B n'est pas compact. Il suffit de montrer que B n'est pas borné. Considérons la suite $(M_n)_{n \in \mathbb{N}}$ d'éléments de B définie par $M_n = \binom{n-n}{n-n}$, alors $\|M_n\|_{\infty} = 2n \to \infty$ lorsque $n \to +\infty$, donc B n'est pas borné.

Exercice 2. (2 points) On considère une suite de fonctions $(f_n)_{n\in\mathbb{N}}$, où pour tout $n\in\mathbb{N}$ la fonction $f_n:\mathbb{R}\to\mathbb{R}$ vérifie : $\forall (x,y)\in\mathbb{R}^2$, $|f_n(x)-f_n(y)|\leq (1+\frac{1}{n})\sqrt{|x-y|}$. On suppose que $(f_n)_{n\in\mathbb{N}}$ converge simplement vers une fonction $f:\mathbb{R}\to\mathbb{R}$.

1. Montrer que f vérifie : $\forall (x,y) \in \mathbb{R}^2$, $|f(x) - f(y)| \leq \sqrt{|x-y|}$. Fixons $(x,y) \in \mathbb{R}^2$. Puisque $(f_n)_{n \in \mathbb{N}}$ converge simplement vers f, nous avons $f_n(x) \to f(x)$ et $f_n(y) \to f(y)$ lorsque $n \to +\infty$, par conséquent $|f_n(x) - f_n(y)| \to |f(x) - f(y)|$ lorsque $n \to +\infty$. En passant à la limite dans l'inégalité ci-dessus (qui a lieu pour tout $n \in \mathbb{N}$) on trouve

$$|f(x) - f(y)| = \lim_{n \to +\infty} |f_n(x) - f_n(y)| \le \lim_{n \to +\infty} \left((1 + \frac{1}{n})\sqrt{|x - y|} \right) = \sqrt{|x - y|},$$

d'où l'inégalité souhaitée.

2. En déduire que f est uniformément continue sur \mathbb{R} . Attention, l'inégalité trouvée précédemment pour f n'implique pas que f est 1-lipschitzienne, car $\sqrt{|x-y|} \geq |x-y|$ lorsque $|x-y| \leq 1...$ Il faut revenir à la définition de l'uniforme continuité. Soit $\varepsilon > 0$. Cherchons $\eta > 0$ tel que pour tout $(x,y) \in \mathbb{R}^2$, si $|x-y| < \eta$ alors $|f(x) - f(y)| < \varepsilon$. D'après la question précédente, il suffit de choisir $\eta = \varepsilon^2$.

Exercice 3. (8 points pour questions 1-2-3-4, question 5 en bonus) On note $E = \mathbb{R}[X]$.

1. Soit $P = \sum_{j=0}^{P} a_j X^j$ un élément de E. Soit $k \in \mathbb{N}$. Calculer $|P^{(k)}(0)|/k!$ en fonction des coefficients

 $a_j, 1 \leq j \leq p$. En déduire que la série de terme général $|P^{(k)}(0)|/k!$ converge.

Si P est un polynôme de degré p, $P^{(k)}$ est un polynôme de degré k-p si $k \leq p$, et est le polynôme nul si k > p. Ainsi $|P^{(k)}(0)|/k! = 0$ pour tout k > p, ce qui implique que la série de terme général (nul à partir d'un certain rang) $|P^{(k)}(0)|/k!$ converge.

Montrons par récurrence sur k que pour tout $0 \le k \le p$, on a

$$P^{(k)} = \sum_{j=k}^{p} \frac{j!}{(j-k)!} a_j X^{j-k}.$$
 (*)

Initialisation : on a

$$P^{(0)} = P = \sum_{j=0}^{p} a_j X^j = \sum_{j=0}^{p} \frac{j!}{(j-0)!} a_j X^{j-0},$$

(*) est donc vraie pour k = 0.

Hérédité : supposons que (*) soit vraie au rang k < p. En dérivant cette relation, on trouve

$$P^{(k+1)} = (P^{(k)})' = \sum_{j=k+1}^{p} \frac{j!}{(j-k)!} a_j (j-k) X^{j-k-1} = \sum_{j=k+1}^{p} \frac{j!}{(j-(k+1))!} a_j X^{j-(k+1)},$$

donc (*) est vraie au rang k + 1.

Finalement, posons X = 0 dans (*): tous les termes de la somme sont nuls sauf celui correspondant à l'indice j tel que j - k = 0, c'est-à-dire le coefficient constant du polynôme $P^{(k)}$. On obtient alors $P^{(k)}(0) = k!a_k$ puis

$$\frac{|P^{(k)}(0)|}{k!} = |a_k|.$$

On en déduit aussi que

$$||P|| = \sum_{k=0}^{p} |a_k|.$$

2. Montrer que $\|\cdot\|$ définit une norme sur E.

Vérifions que $\|\cdot\|$ vérifie les axiomes de la norme.

(1) Pour tout $P \in E$ on a $||P|| \ge 0$:

En effet, pour tout $0 \le k \le p$ on a $|a_k| \ge 0$ donc $||P|| = \sum_{k=0}^{p} |a_k| \ge 0$.

(2) Soit $P \in E$ tel que ||P|| = 0, alors P = 0:

En effet, $\sum_{k=0}^{p} |a_k| = 0$ donc pour tout $0 \le k \le p$ on a $|a_k| = 0$ donc P = 0.

(3) Soient $\lambda \in \mathbb{R}$ et $P \in E$, on a $||\lambda P|| = |\lambda| ||P||$:

En effet, puisque $\lambda P = \sum_{j=0}^{p} (\lambda a_j) X^j$, on déduit de la question précédente que

$$\|\lambda P\| = \sum_{j=0}^{p} |\lambda a_j| = |\lambda| \sum_{j=0}^{p} |a_j| = |\lambda| \|P\|.$$

(4) Soit $(P,Q) \in E^2$, on a $||P+Q|| \le ||P|| + ||Q||$.

En effet, supposons sans perte de généralité que $p = \deg(P) \ge \deg(Q)$ et écrivons $P = \sum_{i=0}^{p} a_i X^j$,

 $Q = \sum_{j=0}^{p} b_j X^j$ (les b_j peuvent éventuellement être nuls), de sorte que $P + Q = \sum_{j=0}^{p} (a_j + b_j) X^j$. Par

inégalité triangulaire (pour la valeur absolue!) et par linéarité de la somme, il vient

$$||P + Q|| = \sum_{k=0}^{p} |a_k + b_k| \le \sum_{k=0}^{p} (|a_k| + |b_k|) = \sum_{k=0}^{p} |a_k| + \sum_{k=0}^{p} |b_k| = ||P|| + ||Q||.$$

3. Pour $k \in \mathbb{N}$, montrer que l'application

$$\Phi_k: (E, \|\cdot\|) \to (\mathbb{R}, |\cdot|), \quad P \mapsto P^{(k)}(0)$$

est linéaire et continue. Calculer sa norme.

Vérifions rapidement que Φ_k est linéaire. Soient $\lambda \in \mathbb{R}$, $(P,Q) \in E^2$. Par linéarité de la dérivation,

$$\Phi_k(\lambda P + Q) = (\lambda P + Q)^{(k)}(0) = \lambda P^{(k)}(0) + Q^{(k)}(0) = \lambda \Phi_k(P) + \Phi_k(Q).$$

Montrons que Φ_k est continue. Soit $P \in E$. On a

$$|\Phi_k(P)| = k! \frac{|P^{(k)}(0)|}{k!} \le k! \sum_{j=0}^{+\infty} \frac{|P^{(j)}(0)|}{j!} = k! ||P||.$$

Puisque Φ_k est linéaire, ceci démontre que Φ_k est continue et que sa norme vérifie $\|\Phi_k\| \leq k!$. On va maintenant démontrer l'inégalité inverse, à savoir $\|\Phi_k\| \geq k!$. Dans ce but, considérons le polynôme $P_k = X^k$. On a $\Phi_k(P_k) = k!$ et $\|P_k\| = 1$. Ainsi $k! = |\Phi_k(P_k)| \leq \|\Phi_k\| \|P_k\| = \|\Phi_k\|$. Finalement, on obtient $\|\Phi_k\| = k!$.

- 4. Montrer que l'application $\Phi: (E, \|\cdot\|) \to (E, \|\cdot\|)$, $P \mapsto P'$ est linéaire et n'est pas continue. On montre comme ci-dessus que Φ est linéaire. Montrons que Φ n'est pas continue. Par l'absurde, supposons que Φ soit continue, c'est-à-dire que $\|\Phi\|$ est fini : pour tout $P \in E$ on a $\|\Phi(P)\| \le \|\Phi\| \|P\|$. Pour tout $n \in \mathbb{N}$, posons $P_n = X^n$, de sorte que $\|P_n\| = 1$ et $\|\Phi(P_n)\| = n$. Alors pour tout $n \in \mathbb{N}$ on obtient $n \le \|\Phi\|$, ce qui est absurde.
 - 5. Soient $(P,Q) \in E^2$ et

$$A = \left\{ R \in E \mid \forall k \in \mathbb{N}, \ R^{(k)}(0) \le P^{(k)}(0) \right\}, B = \left\{ R \in E \mid \forall k \in \mathbb{N}, \ R^{(k)}(0) \ge Q^{(k)}(0) \right\}.$$

- a) Montrer que $A \cap B$ est fermé dans $(E, \|\cdot\|)$. On remarque que $A \cap B = \bigcap_{k \in \mathbb{N}} \Phi_k^{-1}([Q^k(0), P^k(0)])$. Soit $k \in \mathbb{N}$. La question 3. assure que Φ_k est continue de $(E, \|\cdot\|)$ dans $(\mathbb{R}, |\cdot|)$. Par ailleurs, $[Q^k(0), P^k(0)]$ est fermé dans $(\mathbb{R}, |\cdot|)$. Par théorème du cours, $\Phi_k^{-1}([Q^k(0), P^k(0)])$ est donc fermé dans $(E, \|\cdot\|)$. Puisqu'une intersection de fermés est un fermé, on en déduit que c'est le cas de $A \cap B$.
- b) Montrer que $A \cap B$ est borné dans $(E, \|\cdot\|)$. Soit $R \in A \cap B$. Pour tout $k \in \mathbb{N}$, on a

$$-|P^{(k)}(0)| - |Q^{(k)}(0)| \le -|Q^{(k)}(0)| \le Q^{(k)}(0) \le R^{(k)}(0) \le P^{(k)}(0) \le |P^{(k)}(0)| \le |P^{(k)}(0)| + |Q^{(k)}(0)|,$$

donc

$$|R^{(k)}(0)| \le |P^{(k)}(0)| + |Q^{(k)}(0)| \tag{**}$$

(attention aux valeurs absolues!). En divisant par k! puis en faisant la somme on aboutit à $||R|| \le ||P|| + ||Q||$. R étant un élément arbitraire de $A \cap B$ ceci démontre que $A \cap B$ est borné dans $(E, ||\cdot||)$.

c) Montrer que $A \cap B$ est compact dans $(E, \|\cdot\|)$.

Sans perte de généralité, on peut supposer que $p = \deg(P) \ge \deg(Q)$. Soit $R = \sum_{j=0}^{r} c_j X^j$, avec

 $r = \deg(R) \ge 0$. Supposons que $R \in E$. Soit k > p, de sorte que $P^{(k)}(0) = Q^{(k)}(0) = 0$. D'après (**), on a $R^{(k)}(0) = 0 = k!c_k$. Ainsi on a $r \le p$. Finalement, $A \cap B \subset \mathbb{R}_p[X]$ qui est de dimension finie. $A \cap B$ étant fermé et borné dans $(\mathbb{R}_p[X], \|\cdot\|)$ d'après ce qui précède, on en déduit que $A \cap B$ est compact dans $(\mathbb{R}_p[X], \|\cdot\|)$.